Dernière mise à jour le 26/03/2023

Big Data – Mise en oeuvre pratique d’une solution complète d’analyse des données

Informations générales

Type de formation : Formation continue
Domaine : Bases de données & Big Data
Filière : Big Data
Rubrique : Fondamenteaux
Formation éligible au CPF : Non
Formation Action collective : Non

Objectifs & compétences

Disposer des compétences techniques nécessaires à la mise en oeuvre d'analyses Big Data
Comprendre le cadre juridique du stockage et de l'analyse de données
Savoir utiliser des outils de collecte opensource
Être en mesure de choisir la bonne solution de stockage de données au regard des spécificités d'un projet (OLAP, NoSQL, graph)
Explorer la boite à outils technologique que constitue Hadoop et son écosystème et savoir comment utiliser chaque brique (MapReduce, HIVE, SPARK,...)

Public visé

Chefs de projet
Data Scientists, Data Analysts
Développeurs
Analystes et statisticien
Toute personne en charge de la mise en oeuvre opérationnelle d'un projet Big Data en environnement Hadoop

Pré-requis

Il est recommandé d'avoir suivi le module «Big Data - Les fondamentaux de l'analyse des données» (BD007) pour suivre cette formation dans des conditions optimales
Être familier des environnement techniques décisionnels traditionnels et connaître les principes de base d'algorithme est vivement recommandé
Disposer d'une première approche pratique d'Hadoop est un plus pour suivre cette formation

Programme

LA COLLECTE DE DONNÉES
Où et comment collecter des données ?
Les sources de données, les API, les fournisseurs, les agrégateurs...
Les principaux outils de collecte et de traitement de l'information (ETL)
Prise en main de Talend ETL et de Talend Data Preparation (outils libres)
Les particularités de la collecte des données semi-structurées et non-structurées

LE STOCKAGE LES DONNÉES
Les différentes formes de stockage des données : rappel de l'architecture relationnelle de stockage des données transactionnelles (SGBD/R) et multidimensionnelles (OLAP)
Les nouvelles formes de stockage des données - compréhension, positionnement et comparaison : Bases orientées clé-valeur, documents, colonnes, graphes
Panorama des bases de données NoSQL
Prise en main d'une base de données orientée colonne (Hbase)
Particularités liées au stockage des données non-structurées
Comment transformer des données non structurées en données structurées

L'ÉCOSYSTÈME HADOOP
Présentation des principaux modules de la distribution Apache Hadoop
Présentation et comparaison des principales distributions commerciales (Cloudera, Hortonworks...)
L'infrastructure matérielle et logicielle nécessaire au fonctionnement d'une distribution Hadoop en local ou dans le Cloud
Les concepts de base de l’architecture Hadoop : Data Node, Name Node, Job Tracker, Task Tracker
Présentation de HDFS (Système de gestion des fichiers de Hadoop)
Prise en main et exercices pratiques dans HDFS
Présentation de MapReduce (Outil de traitement de Hadoop)
Les commandes exécutées au travers de PIG
Utilisation de HIVE pour transformer du SQL en MapReduce

L'ANALYSE DE DONNÉES
Requêter les données
Analyser et comprendre la signification des données extraites
Particularités liées à l'analyse des données non structurées
Analyse statistique : notions de base
Analyse prédictive : comment transformer des données du passé en prévisions pour le futur
Calculer des tendances
Développer des programmes simples d'automatisation des analyses (en Python)
Machine Learning : les bases de l'apprentissage machine avec Spark
Deep Learning : notions de base de l'analyse future automatisée de données non structurées

MISE EN OEUVRE DE PROJETS BIG DATA
Automatisation de tâches avec Oozie
Mise en production de programmes de Machine Learning
L'utilisation des notebooks comme délivrables
Traitement du temps réel
Gouvernance de données Big Data

Modalités

Modalités : en présentiel, distanciel ou mixte – Horaires de 9H à 12H30 et de 14H à 17H30 soit 7H – Intra et Inter entreprise
Pédagogie : essentiellement participative et ludique, centrée sur l’expérience, l’immersion et la mise en pratique. Alternance d’apports théoriques et d’outils pratiques.
Ressources techniques et pédagogiques : Support de formation au format PDF ou PPT Ordinateur, vidéoprojecteur, Tableau blanc, Visioconférence : Cisco Webex / Teams / Zoom
Pendant la formation : mises en situation, autodiagnostics, travail individuel ou en sous-groupe sur des cas réels

Méthodes

Fin de formation : entretien individuel
Satisfaction des participants : questionnaire de satisfaction réalisé en fin de formation
Assiduité : certificat de réalisation (validation des acquis)
Contact : contact@astonbysqli.com
Code de formation : BD006

Tarifs

Prix public : 2690
Tarif & financement :
Nous vous accompagnons pour trouver la meilleure solution de financement parmi les suivantes :
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation.
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • Pôle Emploi sous réserve de l’acceptation de votre dossier par votre conseiller Pôle Emploi.
  • CPF -MonCompteFormation
Contactez nous pour plus d’information

Lieux & Horaires

Durée : 28 heures
Délai d'accès : 8 Jours

Prochaines sessions

Handi-accueillante Accessible aux personnes en situations de handicap. Pour toutes demandes, contactez notre référente, Mme Rizlene Zumaglini Mail : rzumaglini@aston-ecole.com

à voir aussi dans le même domaine...

Formation continue

Big Data

BD010

BigData avec Cassandra

Connaître les apports de Cassandra, savoir l'installer et le configurer.

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

NSQL

Les fondamentaux du NoSQL

#actioncollective #NoSQL  

A l’issue de la formation, le stagiaire sera capable d’appréhender de façon opérationnelle les principales caractéristiques des bases de données NoSQL. Identifier les différences entre SGBD SQL et SGBD NoSQL Évaluer les apports et les inconvénients inhérents aux technologies NoSQL Identifier les principaux acteurs et solutions du marché pour chaque modèle de données Connaître les champs d'application des SGBD NoSQL en opérationnel et en analytique Comprendre les différentes architectures, modèles de données et implémentations techniques Identifier les critères de choix

sur 2 Jours
En savoir plus

Formation continue

Big Data

BD016

Hadoop Hortonworks : administration avec Ambari

Connaître les principes du framework Hadoop et savoir l'installer, le configurer et l'administrer avec Ambari (tableaux de bord, supervision, gestion des services, etc ...)

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

NSQLCAA

NoSQL – Apache Cassandra, mise en œuvre et administration

#actioncollective #NoSQL  #Apache #Cassandra  

A l’issue de la formation, le stagiaire sera capable d’installer et d’administrer des bases de données sous la solution NoSQL Apache Cassandra. Découvrir l'architecture de NoSQL Apache Cassandra et ses apports par rapport aux autres solutions Installer et configurer le SGBD NoSQL Apache Cassandra Administrer et sécuriser un cluster Cassandra Appréhender le CQL (Cassandra Query Language) Créer une base de données et manipuler ses objets Connaitre la notion de grappe au sein de la base de données

sur 3 Jours
En savoir plus

Formation continue

Big Data

BD017

Base de données NoSQL avec MongoDB

Comprendre le fonctionnement de MongoDB, savoir l'installer, le configurer,l'administrer, créer des requêtes d'interrogation, et mettre en oeuvre la réplication.

21 heures de formations sur 3 Jours
En savoir plus

Formation continue

Big Data

NSQLMDB

NoSQL – MongoDB, mise en œuvre et administration

#actioncollective #NoSQL  #MongoDB  

A l’issue de la formation, le stagiaire sera capable d’installer et d’administrer des bases de données sous la solution NoSQL MongoDB. Comprendre le fonctionnement de MongoDB Comprendre comment installer, configurer et administrer un serveur MongoDB Créer des requêtes d'interrogation Mettre en œuvre la réplication avec MongoDB Distribuer des données sur plusieurs instances d'une base MongoDB Sauvegarder les données d’une base MongoDB

sur 3 Jours
En savoir plus